The Big Benchmarking Roundup
Getting started with machine learning and edge computing
Over the last six months I’ve been looking at machine learning on the edge, publishing a series of articles trying to answer some of the questions that people have been asking about inferencing on embedded hardware.
But, after a half year of posts, talks, and videos, it’s all bit of a sprawling mess and the overall picture is of what’s really happening is rather confusing.
So here’s a great big benchmarking roundup!
Although some people have dismissed the idea of benchmarks for inferencing as irrelevant because “…it’s training times that matter,” that doesn’t really seem justified. While if you take an academic approach to machine learning you often will train thousands of different models to find one that is ‘paper worthy’ but this does not seem to be how things work out in the world.
Instead for embedded systems training is a sunk cost with the final model being used thousands, perhaps even millions, of times depending on how many…